Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Diabetes Metab Disord ; 21(2): 1763-1783, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1956026

ABSTRACT

With the unexpected emergence of the novel 2019 Wuhan coronavirus, the world was faced with a sudden uproar that quickly shifted into a serious life-threatening pandemic. Affecting the lives of the global population and leaving drastic damage in various sections and systems, several measures have been constantly taken to tackle down this crisis. For instance, numerous vaccines have been developed in the past two years, some of which have been granted emergency use, thus providing sufficient immunity to the vaccinated individuals. However, the appearance of newly emerged SARS-CoV-2 variants with accelerated transmission and fatality has led the world towards another pandemic. Having undergone various mutations in genomic and/or amino acid profiles, some of the emerged variants of concern (VOCs) including Alpha, Beta, Gamma, and Delta have displayed immune evasion and pathogenicity even in the vaccinated population, hence raising concerns regarding the efficacy of current vaccines against new VOCs of COVID-19. Therefore, genomic investigations of SARS-CoV-2 mutations are expected to provide valuable insight into the evolution of SARS-CoV-2, while also determining the impact of different mutations on infection severity. This study was constructed with the aim of shining light on recent advances regarding mutations in major COVID-19 VOCs, as well as vaccination efficacy against those VOCs.

2.
Res Pharm Sci ; 16(3): 315-325, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1239059

ABSTRACT

BACKGROUND AND PURPOSE: The new coronavirus (Covid-19) has resulted in great global concerns. Due to the mortality of this virus, scientists from all over the world have been trying to employ different strategies to tackle down this concern. This virus enters cells via phagocytosis through binding to the angiotensin-converting enzyme II receptor. After invading the body, it can stay hidden in there for a period of up to 24 days (incubation period). EXPERIMENTAL APPROACH: In this report, by the use of in silico studies we selected several FDA-approved compounds that possess antiviral properties. We chose the viral Spike protein as the target of drug compounds and carried out the screening process for the FDA databank in order to find the most effective ligand. FINDINGS/RESULTS: The results from dock and MD revealed 10 compounds with high affinity to the receptor-binding domain motif of S protein. The best inhibitors were the ingredients of Depinar, which managed to effectively block the interactions between cells and virus. CONCLUSION AND IMPLICATION: The results of this study were approved by in silico studies and due to the lack of time; we did not test the efficiency of these compounds through in vitro and in vivo studies. However, the selected compounds are all FDA approved and some are supplements like vitamin B12 and don't cause any side effects for patients.

SELECTION OF CITATIONS
SEARCH DETAIL